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Abstract

Minimization of the fundamental frequencies of a vibratory system by means of springs with ‘‘negative’’ stiffness is

probably the only way to attain infra-frequency vibration isolation under gravitation. Traditionally, the design of similar

springs for vehicle driver vibration isolation systems was an art, and design decisions were based primarily on the designer

experience. This paper presents an approach, based on the consistent theory of thin shells, for designing compact springs in

terms of their compatibility with the room available for packaging the vehicle suspensions and simultaneous extension of

the height control region where fundamental frequencies are kept minimal. In the approach, a generic model of a simple

springing element with ‘‘negative’’ stiffness in the large is proposed. A simple iterative procedure is formulated to solve the

geometrically nonlinear problem of large-amplitude post-bucking of springing elements and to represent them in a way

that enables an optimal, computable scheme for the design of springs. Validity of the approach is assessed by a comparison

of the computation and measurement results. Using the approach, we propose a generic spring module applicable to any

vehicle suspension, whether it is a seat suspension, a cab mounting, or a cargotainer platform.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrations in the infra-frequency range, f ¼ 0.5�5Hz, are the most harmful and dangerous to human
health and activity. The effects of these vibrations on humans have been investigated and classified by many
researchers, and in particular by Griffin [1]. Reason is the highest sensitivity of a man to vibrations in these
frequencies. Infra-frequency vibration isolation is possible if the fundamental frequencies f0 of a vibration
isolation system (VIS) are shifted below the external vibration frequencies f, i.e. if f05f. This holds true even if
gravity is reduced or if suspension stiffness is minimized. This is clear if one considers the single degree of
freedom VIS:
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Fig. 1. Conventional seat suspensions with LBSs possessing a certain ‘‘negative’’ stiffness in the small, where 1 is the suspension basis, 2 is

the input link of GM, 10(+) is the LBS.

C.-M. Lee et al. / Journal of Sound and Vibration 302 (2007) 865–874866
where k is the suspension stiffness, m the sprung mass (including occupant), ngA(0,1] the coefficient of
gravitation, gE9810mm s�2, z0 the suspension stroke, and ca the asymmetry parameter of the stroke (which
depends on the suspension height control with respect to mid-ride).

Formula (1) shows that the minimization of k is the only way to attain infra-frequency vibration isolation
under gravitation. Low values of k can be obtained by using a spring with ‘‘negative’’ stiffness. This type
of elasticity, under a certain load P, is a result of local buckling of load-bearing springs (LBSs) numbered in
Fig. 1 as 10(+), e.g., metal elastic rods (see Figs. 1(a),(b)) or rodless air-springs (see Fig. 1(c)). The subscript in
10(+) denotes ‘‘positive’’ stiffness of LBS in operation. This may lead to certain minima of k and f0, and finally
to perfect vibration isolation, but under small-amplitude movement in the z-direction, as indicated. Even so,
the performance of such springs come into conflict with their dimensions with respect to vehicle driver VISs as
explored in detail in Refs. [2,3] and in many other publications.

More general and operative designs are the composites consisting of suspensions with ‘‘positive’’ stiffness
and springs with ‘‘negative’’ stiffness that might have new suspensions with stiffnesses much smaller than those
of their ‘‘positive’’ constituents [4–8]. Since a spring with ‘‘negative’’ stiffness has no load capacity, it can
operate while connected in parallel with mechanical, hydraulic, pneumatic, or other LBSs with ‘‘positive’’
stiffness. This raises the following questions: Is there a way to evaluate the spring design in terms of its
compatibility with the room available for packaging the new suspension and extension of the height control
region where the fundamental frequencies can be minimized? Is there a way to rationalize the design process
and make it less dependent on designer experience and chance?

In this paper, we attempted to identify springs with ‘‘negative’’ stiffness as design building blocks and to
represent them in a way that enables an optimal, computable scheme for upgrading suspensions for vehicle
driver VISs. Based on the results of investigations of a wide variety of devices, we first designed a simple
springing element with ‘‘negative’’ stiffness and then packed a compact spring, which was compatible and
connectible at will in space with the function-generating mechanism or better to say with the guide mechanism
(GM) of a vehicle suspension. Then, we proposed a simple iterative procedure for solving the geometrically
nonlinear problem of large-amplitude post-buckling of the springs. Numerical results of the spring analysis
and design are verified through measurements. Finally, we demonstrated, along with design samples, the
compatibility of the springs with different types of vehicle suspensions.

2. Generic model of springing element with variable ‘‘negative’’ stiffness

Rod-shaped elastic structures traditionally were and still remain a benchmark for springs with ‘‘negative’’
stiffness. This phenomenon is outlined e.g. in Ref. [9]; the springs’ use for vibration isolation began in the
1960s [2,10–12]. Let us construct a generic model of the structure. Let a slender beam of length 2l be simply
supported as shown in Fig. 2(a). Considering a state evolution, we bring the beam in a springing element with
‘‘negative’’ stiffness. Each pre- and post-equilibrium state is shown by the dotted and solid lines, respectively.
First, under a certain axial load Pa, the beam is buckled as shown in Fig. 2(a); here, e0,$0, and c0 are the axial
pre-compression, bending deflection, and end-slope, respectively. Obviously, $0 and c0 are uniquely
dependent on e0, which defines the beam shape in post-buckling. Second, combining the Pa force and T2

(a)
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Fig. 2. A sequence of the model construction of a springing element with ‘‘negative’’ stiffness.
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moment loading without a change in e0 leads to the shape shown in Fig. 2(b). Given T2
(a), one may obtain a

certain value of the slope c1. Finally, a transverse load Pl, using previous values for e0 and c1, results in the
state shown in Fig. 2(c).

A well-known exact equation for transverse-longitudinal bending of a slender beam is

M 00
F þ ðN$

0Þ
0
¼ 0, (2)

where MF and N are the bending moment and axial force, respectively, s is the coordinate along the beam axis
line, and a prime (0) denotes differentiation with respect to s. We formulate MF based on the assumption that
the axis line is not stretched, giving MF ¼ EJ$00[1�($0)2]�0.5. If we also assume (a) ($0)251 and (b) NEPa,
then the MF can be linearized, and so can Eq. (2):

$0000 þ c2$00 ¼ 0, (3)

where c2 ¼ Pa(EJ)�1, and EJ is the bending rigidity.
To find the e0-function, we use the nonlinear equationZ 2l

0
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0
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ds ¼ 2lð1� �0Þ. (4)

Considering also the assumption, [($0)251], Eq. (4) yields
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0

ð$0Þ2 ds. (5)

Since Eq. (3) is linear, then the bending amplitude one should define from nonlinear Eq. (5).
Any solution of Eq. (3) is of the form,$ ¼ C1 sin cs+C2 cos cs+C3s+C4, where C1�C4 are the constants of

integration determined from the boundary conditions. Solving the problem by the models taken in Fig. 2
(considering only half the length of the beam by symmetry, and properly changing the boundary conditions),
we finally obtain, under condition, c1 ¼ 0, the following:
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q , (6b)

where ~c ¼ 2lc=p is a key parameter for designing a springing element with ‘‘negative’’ stiffness.
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The slope c1 is a design parameter which significantly extends the region of ‘‘negative’’ stiffness and
simultaneously saves suspension room without performance loss [7]. From decision analysis, we find that a
certain minimal value for c1 6¼0 should be taken in the range ~c42:

c1 min ¼ 8p�2 ~c�1½2þ cos 0:5p~c� 6ðp~cÞ�1 sin 0:5p~c�0:5
� �

min
. (7)

Eqs. (6) define the parametric dependence between the force ~P and bending ~$. The ð ~P; ~$Þ-curves have the
forms shown in Fig. 3, regardless of the sectional shape of the springing element with ‘‘negative’’ stiffness.
Also, Eq. (6a) yields a fundamental relation for the element design. For instance, in case of a rectangular
cross-section with dimensions b� h we obtain

Pl ¼ ~Pl

p3Ebl

12ð1� n2Þ
$0

l

� � h

l

� �3

, (8)

where b and h are the width and thickness (cross-sectional height) of the element, respectively, and E and v are
the Young’s modulus and Poisson’s ratio for spring steels [13], respectively.

Supplementing Eq. (8) with the strength criterion as
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yields simultaneous equations for designing the element, here [s]F is the allowable bending stress.
Analysis of Eq. (8) while considering Eq. (9) leads to some important predictions in designing the springs

with ‘‘negative’’ stiffness to upgrade a vehicle suspension, whether it is a driver seat, cab mounting or other
object. These predictions, in a sense justify, the failure of the evolution in designing the springs that started in
1960s and have been for the most part empirical. So, we take the below as a breakthrough:
(a)
 The (h/l)-ratio means that, considering mechanical data of spring steels, the springing element is to be a
thin-walled structure [5,7].
(b)
 The (bl)-product means that the springing element is more likely to be in the form of a thin shallow shell or
thin plate than of a slender beam or other rod-shaped design [14]. In this case, one may obtain large-
amplitude post-buckling and, respectively, to extend the ‘‘negative’’ stiffness region without increasing the
suspension room and without loss of the spring strength.
(c)
 The springs are to be arranged from the npl-number of the elements in order to pack the springs perfectly
compactly in the suspension room and to simultaneously minimize the stiffness of vehicle suspensions
[4,5,7].
Fig. 3. Boundaries of the region of ‘‘negative’’ stiffness in the large.
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3. Spring design procedure

3.1. Formulation

As predicted above, thin shallow spherical and cylindrical shells, thin plates under cylindrical bending, made
of elastic materials behave as ‘‘off-the-shelf’’ structures that can be used to design springing elements with
‘‘negative’’ stiffness. The behavior of any of these structures can be evaluated precisely in the framework of the
nonlinear theory of elasticity. And there exist many perfect and developing numerical methods to formulate
and solve the nonlinear problems, in particular [15–22]. Though in engineering design, one prefers approaches
that enable a reduction the geometrically nonlinear problem of large-amplitude post-buckling of thin-walled
structures to a sequence of linear boundary value problems, a simple and sufficiently precise numerical
algorithm can also give a solution that converges sufficiently quickly.

One of the approaches is based on the following hypothesis [14]: Generally, the nodes of a finite element
(FE) model of the structure move along nonlinear paths during deformation. What if the final displacement of
each FE is the sum of a ‘‘large’’ displacement of the FE as a rigid body and a ‘‘small’’ displacement under
deformation?

Let us consider, in the general case, a shell structure of arbitrary shape and curvature. The initial state
of its median surface is described by the vector, x ¼ x(y1,y2), where y1 and y2 are the curvilinear coordi-
nates. Assume that this surface moves into a final state, x+ ¼ x+ugl, so that the nth FE undergoes a
total displacement of, ugl

(n)
¼ u*

(n)+u(n), where u*
(n) is the vector of ‘‘large’’ displacements of the FE as a

rigid body and u(n) is the vector of ‘‘small’’ displacements from the state described by the vector,
x*
(n)
¼ x(n)+u*

(n). Hence, the variation of elastic energy of the FE is determined by the displacements u(n) only.
If assume the smallness of u(n), then one may use linear relations for the strain energy and equations of state. It
is clear also that a greater number of FEs gives a more accurate assumption about the smallness of the
displacements.

The hypothesis allows for the formulation a simple iterative procedure for solving the above nonlinear
problem:
(1)
 Let a state for nth FE be described by the vector

xðn;kÞ ¼ xðnÞ þ u
ðn;kÞ
gl , (10)

where k is the iteration. At the first subsequent iteration (k+1), the vector u*
(n,k+1) is determined so that the

strain energy of each FE becomes minimal, giving displacements of

Duðn;kþ1Þ ¼ u
ðn;kÞ
gl � u

ðn;kþ1Þ
� . (11)

The vector u*
(n,k+1) is typically a function of six arbitrary constants, variable for each FE and determined

at this stage.
Thus, the structure is divided into an arbitrary number of FEs moving as a system of free rigid bodies from
an initial state to an intermediate one.
(2)
 Then, each FE moves to a final state to be conjugated into an entire structure by ‘‘small’’ displacements
u(n,k+1) from the state x*

(n,k+1)
¼ x(n)+u*

(n,k+1). To determine these displacements evaluating the deflected
modes of each FE, the strain energy of the structure is minimized.
The strain energy of each FE in a local system of coordinates, determined by the vector x*
(n,k+1), can be

expressed in the following form:

Eðn;kþ1Þp ¼ 0:5Vðn;kþ1ÞTloc K
ðnÞ
locV

ðn;kþ1Þ
loc , (12)

where Vloc
(n,k+1) and Kloc

(n) are the vectors of node displacements and the stiffness matrix of the nth FE in the local
system of coordinates, respectively.
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If we find a relation between the vectors Vloc
(n,k+1) and V

ðn;kþ1Þ
gl which are connected via the matrix B(n,k+1)

and the vector C(n,k+1) as

V
ðn;kþ1Þ
loc ¼ Bðn;kþ1ÞV

ðn;kþ1Þ
gl þ Cðn;kþ1Þ. (13)

Then one may formulate the total strain energy of the structure (in the global system of coordinates):

Eðkþ1Þp ¼ 0:5Vðkþ1ÞTgl K
ðkþ1Þ
gl V

ðkþ1Þ
gl þ P

ðkþ1ÞT
gl V

ðkþ1Þ
gl þ E

ðkþ1Þ
p0 , (14)

where the stiffness matrix, the vector of the imaginary load (it makes allowance for nonlinearities in
transformation the local matrix into global one), and the component of the strain energy independent of the
vector of global displacements, are, respectively,

K
ðkþ1Þ
gl ¼

X
n

K
ðn;kþ1Þ
gl ¼

X
n

Bðn;kþ1ÞTK
ðnÞ
locB

ðn;kþ1Þ, (15a)

P
ðkþ1Þ
gl ¼

X
n

Bðn;kþ1ÞTK
ðnÞ
locC

ðn;kþ1Þ, (15b)

E
ðkþ1Þ
p0 ¼ 0:5

X
n

Cðn;kþ1ÞTK
ðnÞ
locC

ðn;kþ1Þ. (15c)

Minimizing the Ep
(k+1) yields a system of linear equations for FE analysis:

K
ðkþ1Þ
gl V

ðkþ1Þ
gl ¼ P�gl � P

ðkþ1Þ
gl , (16)

where P�gl is the vector of effective external forces.
The iterative procedure is complete if the differences between vectors u*

(n,k) and u*
(n,k+1) of ‘‘small’’

displacements of the FE system are smaller than a specified allowance. The linear elasticity solution can be
accepted as an initial estimate u

ðn;0Þ
gl for the process.

Thus, the hypothesis does not require the compatibility equations between the FEs, when a system of free
rigid bodies in space is considered (instead of an entire structure), at the iteration. The strain energy of an FE
is determined for conjugating displacements only. From the assumption about the smallness of these
displacements, the relations from linear thin shell theory hold in formulating the strain energy function,
constructing the stiffness matrices, etc. The compatibility equations can be expressed as by Novozhylov [23].
At the same time, we modify the state equations. Analysis shows that the modified equations do not result in
greater solution accuracy. They do allow, however, the formulation of simultaneous equations to describe the
large-amplitude post-buckling of a thin-walled structure. The modified equations differ from the well-known
ones [23] by the lowest terms. The equations, however, simplify the formulation of shape functions for the
structures [14]; it was confirmed through study the other solutions, in particular by Gallagher [24], Bogner et
al. [25], and Levin [26]. The validity of the approximate model is determined by the fineness of the FE mesh
and was verified by comparing computations and measurements (see below), suggesting that the procedure
effectively accounts for all the systemic nonlinearities.
3.2. Results and discussion

Based on the above procedure for the analysis of thin-walled structures, we proposed a multilevel scheme of
the design: simple springing element—spring with ‘‘negative’’ stiffness in the large—spring mechanism easy
mountable into a vehicle suspension.

In view of the above predictions, the spring can be arranged e.g. with npl thin plates spaced around a central
link. Packaging the npl springing elements with npl/nset thin plates in each lamination gives the configuration
shown schematically in Fig. 4(a). In FE analysis sampled below we assume (a) there is no interference by the
thin plates, but (b) the plates are in strong order in lamination. Dimensionless length, external radius of central
link 2, axial pre-compression, and the end-slope of thin plate 20(�) (the subscript in 20(�) denotes ‘‘negative’’
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Fig. 4. A model of spring with ‘‘negative’’ stiffness: (a) layout of a mechanism with the spring consisting a set of thin plates; (b) free body

diagram formed by cutting jth thin plate at section I.
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stiffness in operation), and are the main variables, respectively,

~l ¼ lh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þ

p
; ~r2 ¼ r2l

�1; ~�0 ¼ 1� ðr1 � r2Þl
�1; ~c1 ¼ c1l�1, (17a2d)

where r1 is the inner radius of spring casing 1.
The dimensionless performance of the spring and structural strength of the thin plate are

~T
ðaÞ

2 ¼
T
ðaÞ
2 npl

Ebl2
; ~k2 ¼

d ~T
ðaÞ

2

dj
; ~sF ðmaxÞ ¼

sF ðmaxÞ

se

¼
E

2ð1� n2Þse

~l
�1 d2 ~$

d ~x2

� �
ðmaxÞ

, (18a2c)

where central link 2 is loaded with an external torque T2
(a) in order to transform a set of thin plates 20(�) into a

spring with ‘‘negative’’ (torsional) stiffness k2, j is the rotation angle of the link, se is the elastic limit [13],
~$ ¼ $=l, and ~x ¼ x=l is the moving coordinate for the rectangular cross-section of the thin plate 20(�).
Torque, T

ðaÞ
2 ¼

P
k¼1ðMFk �Nkek �Qkr2Þ, is defined by the equilibrium of central link 2; here, e is the

eccentricity of the kth thin plate relative to central one (see Fig. 4(b)). Solving the equations given by Eq. (16)
yields the relations for the bending moment MF, membrane force N, and shear force Q in the thin plate. The
stress peak-peak is to be ~smax

F ðmaxÞo1. Otherwise, ~�0 is reduced, and the iterative procedure is repeated. Solution
of the problem results in a range of j ¼ j0 where ~T

ðaÞ

2 is between critical points C1 and C2, i.e. where the spring
has a certain ‘‘negative’’ stiffness, ~k2.

Solving the problem, one may formulate a few simple relationships for optimal design of the springs.
Optimizing ~�0 using the design database for spring steels [13], we formulated the relationships between the
design parameters and the performance of the spring mechanism, in particular [7],

ðr1 � r2Þh
�1
¼ 6:25j0 � 8� 10�4j2

0 � 6:25� 10�4j3
0, (19a)

c1 � 1:08375j0. (19b)

The focus of the examples below is to demonstrate, using Eqs. (19), the possibilities for the design of
perfectly compact spring mechanisms and simultaneous extendibility of the region of ‘‘negative’’ stiffness to
improve vibration isolation of a vehicle object.

Fig. 5 demonstrates validity of the design approach (compare the strain states, computed and operative, of
the spring in Figs. 5(a),(b)) with respect to seat suspensions. As can be seen from the example (compare also
the performance of the spring mechanism in Fig. 5(c)), j04281. Hence, if such a mechanism is connected to a
GM, then it results in extremely soft suspension within the stroke around z0X130–150mm that is over the
room provided with design of GMs [8].

Principally, the ranges of j0, T2
(a), and |�k2| depend on e0. Optimizing e0-value, we design the spring

mechanism which dimensions and performance give the best fit with respect to a certain type of vehicle
suspensions. Specifically, analysis of Eqs. (19) shows that one can increase the range of j0 with insignificant
gain or without gain in the dimensions of spring mechanisms and connect them at will in space to seat
suspensions of any type (see samples in Fig. 6). As shown, central link 2 of the spring mechanism and the input
link of the GM can be coupled via force closure (see Figs. 6(a),(b)) or kinematically as shown in Fig. 6(c) [6].
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Fig. 5. Comparison of computation and measurement results applied to design of springs with ‘‘negative’’ stiffness to a seat suspension:

(a) the spring state of strain by FE analysis; (b) identification of same state via digital photography of the full-scale spring prototype; (c)

performance of the spring mechanism (1—computation, ignoring structural friction, 2—measurement, where 2m and 2k are the loading

and unloading curves).

Fig. 6. Seat suspensions upgraded: (a,b) layouts of mechanical and (c) pneumatic suspensions, here, 10(+) are the torsion, tension or

compression LBSs, respectively; 20(�) are the mechanisms with springs of ‘‘negative’’ stiffness in the large, 2 are the GMs.
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By varying the c1-angle one can resolve ambiguity due to the nonlinearities and also extend the range of j0

(see Fig. 7). In the example shown in Fig. 7(b), the performance of the spring mechanism is identical in the
stroke and reverse, and the range of j0 is increased by 23%, in comparison with the sample in Fig. 7(a).
Properly adjusting c1 one may decrease the dimensions of the mechanism, in additional. In the example, the
extra benefit is 10% [7].

Performance of the spring mechanism is varied multiply, and with insignificant changes of design
parameters. Analysis of Eqs. (19) shows also that such a mechanism might be used as a generic module to
minimize the stiffness of any of vehicle suspensions, whether it is a seat, cab mounting, or cargotainer
platform. Fig. 8 shows that useful variability of the ranges of j0 and |�k2| can be obtained through the
changes of two parameters only.

4. Conclusion

This paper presented an approach, based on the consistent theory of thin shells, for designing springs
used to effectively minimize the suspension stiffness and thus the fundamental frequencies of vehicle VISs.
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Fig. 7. Performance of the spring mechanism: (a) if c1 ¼ 01 (here, m and k are the stroke and reverse curves, respectively); (b) if c1E301.

a b c

Fig. 8. Layouts of spring mechanisms and their performance relations with respect to: (a) the seat suspension; (b) seat suspension and cab

mounting; (c) cargotainer platform, here the mechanisms are scaled for seat suspensions (1), the dumping device (2), and the platform (3).
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The minimization, in turn, leads to improving of vibration isolation up to an absolute immobility of an object
under infra-frequency (extremely low) vibrations, which are the most harmful and dangerous to a vehicle
driver and some other objects must to be protected. In the approach, a generic model of a springing element
with variable ‘‘negative’’ stiffness was proposed. Within the scope of the FE method, a simple iterative
procedure was formulated to solve the geometrically nonlinear problem of large-amplitude post-bucking of
the elements, and to represent them in a manner that enables an optimal, computable scheme for the design of
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springs with ‘‘negative’’ stiffness in the large and thus the spring mechanisms compact and easy mountable
into vehicle suspensions. Samples of the mechanisms have been used in seat suspensions and tested successfully
in the land vehicles, construction equipment, and agricultural machines, within parallel testing of conventional
seat suspensions [5,8]. They also have been tested in helicopters [8], in what was apparently the first successful
application of seats suspended in aircrafts. Using the approach, one may design generic modules and use them
for perfect improving of vibration isolation in both large equipment, like a driver seat, cab mounting,
cargotainer platform, and in miniature one, like a vehicle-borne mini-device.
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